Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yun Yu, ${ }^{\text {a }}$ Kai-Bin Yang, ${ }^{\text {b }}$ Li-Rong Lin, ${ }^{\text {b }}$ Rong-Bin Huang ${ }^{\text {b }}$ and Lan-Sun Zheng ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Long Yan College, Long Yan, Fujian 364000, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\text {c State Key Laboratory for Physical }}$ Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.066$
$w R$ factor $=0.164$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

7-Amino-3-(3-aminophenyl)-1H-quinazoline-2,4-dithione

Hydrothermal reaction of m-phenylenediamine and carbon disulfide in the molar ratio 1:2 produces the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}_{2}$. X-ray crystal structure determination shows that the compound is chiral by virtue of restricted rotation and crystallizes in a non-centrosymmetric but achiral space group, giving a racemic structure.

Comment

Hydrothermal reactions of m-phenylenediamine and carbon disulfide in different molar ratios give different products, for example, for 1:1, 5-amino-1,3-benzothiazole-2(3H)-thione (Zhong et al., 2003); for 1:2, 7-amino-1H-3,1-benzothiazine-2,4-dithione (Yu et al., 2005), and for 2:1, the title compound, (I).

(I)

The crystal structure analysis shows that the molecule of (I) is chiral, because the aminophenyl ring is twisted out of the plane of the ring to which is is attached (Fig. 1). The quinazoline ring system is planar, with a small mean deviation of $0.034 \AA$ from the least-squares plane. The aminobenzene ring is almost perpendicular to that plane $\left(74.2^{\circ}\right)$ The molecule features $\mathrm{C}=\mathrm{S}$ double bonds of nearly the same length [S1$\mathrm{C} 1=1.663$ (4) \AA and $\mathrm{S} 2-\mathrm{C} 2=1.691$ (5) \AA]. The molecules pack in the solid state in a non-centrosymmetric but achiral space group, as a racemate.

Experimental

An ethanol solution (20 ml) containing m-phenylenediamine dihydrochloride (10 mmol) and carbon disulfide (5 mmol) was placed in a 25 ml autoclave with a Teflon liner. The pH of the solution was adjusted to $7-8$ with sodium hydroxide solution. The autoclave was heated to 373 K , kept at that temperature for 96 h , and then cooled to room temperature at a rate of $0.5 \mathrm{~K} \mathrm{~min}^{-1}$. Orange prism-shaped crystals were obtained for X-ray diffraction. Elemental analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}_{2}$: C 55.97, H 4.03, N 18.65, S 42.50%; found: C 55.18, H 4.34, N 18.67%. MS: $M^{+} / Z, 300$. IR(KBr): $v_{\text {max }} 3424,3317$, 3208, 1618, 1545, 1491, 1401, 1385, 1281, 1196, 1149, 827, 772, $694 \mathrm{~cm}^{-1}$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\text {max }} 400 \mathrm{~nm}\left(\varepsilon=31000 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1}\right), 292 \mathrm{~nm}\left(\varepsilon=42000 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.

Received 19 May 2005 Accepted 23 June 2005 Online 30 June 2005

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=300.40$
Orthorhombic, ${ }^{2}$ ca2 1_{1}
$a=21.883$ (2) \AA
$b=8.7246$ (6) \AA
$c=7.2407$ (6) \AA
$V=1382.4$ (2) \AA^{3}
$Z=4$
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART APEX CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.888, T_{\text {max }}=0.935$
7640 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.164$
$S=0.99$
2884 reflections
181 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 4278 reflections
$\theta=2.0-27.0^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, pale orange
$0.32 \times 0.20 \times 0.18 \mathrm{~mm}$

2884 independent reflections
2080 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-10 \rightarrow 27$
$k=-10 \rightarrow 10$
$l=-9 \rightarrow 9$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0886 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$
Absolute structure: Flack
(1983)1247 Friedel pairs

Flack parameter: -0.08 (15)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{S} 1-\mathrm{C} 1$	$1.691(5)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.426(5)$
$\mathrm{S} 2-\mathrm{C} 2$	$1.663(4)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.443(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.348(5)$	$\mathrm{N} 4-\mathrm{C} 13$	$1.381(7)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.397(6)$	$\mathrm{C} 2-\mathrm{C} 8$	$1.459(6)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.405(5)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$124.3(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$119.7(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$123.4(3)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$123.5(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9$	$117.5(4)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 8$	$115.7(4)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 9$	$118.9(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$	$120.0(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$116.9(4)$	$\mathrm{C} 8-\mathrm{C} 2-\mathrm{S} 2$	$124.3(3)$

All H atoms were placed geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined using a riding model with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})$ fixed at 1.2 times $U_{\text {eq }}$ of the parent C or N atom.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 2027104, 20273052 and 20221002), the Department of Science \& Technology, China (grant No. 2002CCA01600), and the National Science Foundation of Fujian Province (grant No. E0110001).

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yu, Y., Zhong, H.-P., Yang, K.-B., Huang, R.-B. \& Zheng, L.-S. (2005). Acta Cryst. E61, o387-o388.
Zhong, H.-P., Long, L.-S., Huang, R.-B., Zheng, L.-S. \& Ng, S. W. (2003). Acta Cryst. E59, o1599-o1600.

